Sale!

# Quiz 7 recursive function

\$30.00

Category:
Rate this product

Quiz 7
We’ve defined a recursive function that operates on sub-nested-lists called
semi_homogeneous. Parts of the function have been written for you already.

A nested list is semi-homogeneous if it is a single integer, or if it’s a
list satisfying both of these conditions:
1. Its sub-nested-lists are either all integers or all lists
2. Its sub-nested-lists are all semi-homogeneous

An empty list is considered to be semi-homogeneous.

1.  In test_single_integer, create a test case that calls
semi_homogeneous on a single integer.
2.  In test_list_not_semi_homogeneous, create a test case that calls
semi_homogeneous on a list that is NOT semi-homogeneous.
3.  In test_list_with_only_integers, create a test case that calls
semi_homogeneous on a list that contains only integers.
4.  In test_list_with_semi_homogeneous_nested_lists, create a test case that
calls semi_homogeneous on a list with semi-homogeneous nested lists.
5.  Finish the implementation of semi_homogeneous.

Submit your code on MarkUs and run the automated self-test.
Your grade on the quiz will be based solely on the results of the self-test.
(i.e. if you pass all of the tests, you get full marks on the quiz.)
“””
from typing import Union, List
import pytest

def semi_homogeneous(obj: Union[int, List]) -> bool:
“””Return True if the given nested list is semi-homogeneous.

A nested list is semi-homogeneous if it is a single integer, or if it’s a
list satisfying both of these conditions:
1. Its sub-nested-lists are either all integers or all lists
2. Its sub-nested-lists are all semi-homogeneous

An empty list is considered to be semi-homogeneous.
“””
# TODO: Implement this function (Task 5)
if isinstance(obj, int):
# TODO: Fill in the base case’s return statement
return True
else:
# TODO: Handle the recursive case.
#       We’ve started this for you in a particular way:
#       – sublist_type will be the type that we want all of our sublists
#         to have. We pick it based on the type of the very first
#         sublist.
#       – If we see an element that is not of this type, then we know
#         obj is not semi-homogeneous.
#       You may modify this if you wish, but you don’t have to.
sublist_type = None

for sublist in obj:
if sublist_type is None:
sublist_type = type(sublist)
elif not isinstance(sublist, sublist_type):
# TODO: Fill in the return statement
return False

# TODO: Make a recursive call to semi_homogeneous(sublist) and do
#       something with the result.
if not semi_homogeneous(sublist):
return False
# TODO: Fill in the return statement
return True

def test_single_integer() -> None:
“””Test semi_homogeneous on a single integer.”””
# TODO: Fill in the …s below with an example. (Task 1)
actual = semi_homogeneous(5)
expected = True

assert actual is expected

def test_list_not_semi_homogeneous() -> None:
“””Test semi_homogeneous on a list that is not semi-homogeneous”””
# TODO: Fill in the …s below with an example. (Task 2)
actual = semi_homogeneous([1, “…”, 3])
expected = False

assert actual is expected

def test_list_with_only_integers() -> None:
“””Test semi_homogeneous on a list with only integers.”””
# TODO: Fill in the …s below with an example. (Task 3)
actual = semi_homogeneous([1, 2, 3])
expected = True

assert actual is expected

def test_list_with_semi_homogeneous_nested_lists() -> None:
“””Test semi_homogeneous on a list with sub-nested-lists that are all lists
that are semi-homogeneous.”””
# TODO: Fill in the …s below with an example. (Task 4)
actual = semi_homogeneous([[1, 2], [3, 4], [5], [6]])
expected = True

assert actual is expected

if __name__ == ‘__main__’:
import doctest
doctest.testmod()
pytest.main([‘quiz7.py’])

Quiz 7 recursive function
\$30.00
Hello
Can we help?